Centre of Excellence for Clinical Management of COVID-19
All India Institute of Medical Sciences, Bhopal

PRINCIPLES OF MECHANICAL VENTILATION
Initiation of Mechanical Ventilation

• Indications
 • Indications for Ventilatory Support
 • Acute Respiratory Failure
 • Prophylactic Ventilatory Support
 • Hyperventilation Therapy
Initiation of Mechanical Ventilation

• Indications
 • Acute Respiratory Failure (ARF)
 • Respiratory activity is inadequate or is insufficient to maintain adequate oxygen uptake and carbon dioxide clearance.
 • Inability of a patient to maintain arterial PaO2, PaCO2, and pH acceptable levels
 • PaO2 < 70 on an O2 >0.6 (PaO2/FiO2 <200)
 • PaCO2 > 55 mm Hg and rising
 • pH 7.25 and lower
Initiation of Mechanical Ventilation

• **Indications**

 • Acute Respiratory Failure (ARF)

 • *Hypoxic lung failure (Type I)*

 • Ventilation/perfusion mismatch
 • Diffusion defect
 • Right-to-left shunt
 • Alveolar hypoventilation
 • Decreased inspired oxygen

 • Acute life-threatening or vital organ-threatening tissue hypoxia
Initiation of Mechanical Ventilation

• Indications
 • Acute Respiratory Failure (ARF)
 • *Clinical Presentation of Severe Hypoxemia*
 • Tachypnea
 • Dyspnea
 • Central cyanosis
 • Tachycardia
 • Hypertension
 • Irritability, confusion
 • Loss of consciousness
 • Coma
Initiation of Mechanical Ventilation

- Indications
 - Acute Respiratory Failure (ARF)
 - Acute Hypercapnic Respiratory Failure (Type II)
 - CNS Disorders
 - Reduced Drive To Breathe: depressant drugs, brain or brainstem lesions (stroke, trauma, tumors), hypothyroidism
 - Increased Drive to Breathe: increased metabolic rate (≡CO2 production), metabolic acidosis, anxiety associated with dyspnea
Initiation of Mechanical Ventilation

- Indications
 - Acute Respiratory Failure (ARF)
 - Acute Hypercapnic Respiratory Failure (Type II)
 - Neuromuscular Disorders
 - Paralytic Disorders: Myasthenia Gravis, Guillain-Barre, ALS, poliomyelitis, etc.
 - Paralytic Drugs: Curare, nerve gas, succinylcholine, insecticides
 - Drugs that affect neuromuscular transmission; calcium channel blockers, long-term adenocorticosteroids, etc.
 - Impaired Muscle Function: electrolyte imbalance, malnutrition, chronic pulmonary disease, etc.
Initiation of Mechanical Ventilation

- **Indications**
 - Acute Respiratory Failure (ARF)
 - *Acute Hypercapnic Respiratory Failure*
 - Increased Work of Breathing
 - *Pleural Occupying Lesions:* pleural effusions, hemothorax, empyema, pneumothorax
 - *Chest Wall Deformities:* flail chest, kyphoscoliosis, obesity
 - *Increased Airway Resistance:* secretions, mucosal edema, bronchoconstriction, foreign body
 - *Lung Tissue Involvement:* interstitial pulmonary fibrotic diseases
Initiation of Mechanical Ventilation

• Indications
 • Acute Respiratory Failure (ARF)
 • *Acute Hypercapnic Respiratory Failure*
 • Increased Work of Breathing (cont.)
 • *Lung Tissue Involvement:* interstitial pulmonary fibrotic diseases, aspiration, ARDS, cardiogenic PE, drug induced PE
 • *Pulmonary Vascular Problems:* pulmonary thromboembolism, pulmonary vascular damage
 • *Dynamic Hyperinflation* (air trapping)
 • *Postoperative Pulmonary Complications*
Initiation of Mechanical Ventilation

• Indications
 • Acute Respiratory Failure (ARF)
 • Clinical Presentation of Hypercapnia
 • Tachypnea
 • Dyspnea
 • Tachycardia
 • Hypertension
 • Headache (hallucinations when severe)
 • Confusion (loss of consciousness, even coma when severe)
 • Sweating
Initiation of Mechanical Ventilation

• Prophylactic Ventilatory Support
 • Clinical conditions in which there is a high risk of future respiratory failure
 • Examples: Brain injury, heart muscle injury, major surgery, prolonged shock, smoke injury

• Ventilatory support is instituted to:
 • Decrease the WOB
 • Minimize O2 consumption and hypoxemia
 • Reduce cardiopulmonary stress
 • Control airway with sedation
Initiation of Mechanical Ventilation

• Hyperventilation Therapy
 • Ventilatory support is instituted to control and manipulate PaCO2 to lower than normal levels
 • Acute head injury
Initiation of Mechanical Ventilation

• Contraindications
 • Untreated pneumothorax

• Relative Contraindications
 • Patient’s informed consent
 • Medical futility
 • Reduction or termination of patient pain and suffering
7 Factors to be tuned finely

- Mode of Ventilation
- Minute Ventilation
- Respiratory Rate
- Tidal Volume
- I:E Ratio

- Rate of Flow of gas & Flow Pattern
- FiO$_2$
Initiation of Mechanical Ventilation

- **Initial Ventilator Settings**
 - **Mode**
 - **Full Ventilatory Support (FVS)**
 - Assumes essentially all the work of breathing
 - Majority initially require FVS
 - Assist Control (A/C)
 - SIMV if rate is 12 BPM or higher (Chang)
 - **Partial Ventilatory Support (PVS)**
 - Provides less than total amount of work of breathing
 - Common during weaning
 - SIMV at lower rates (usually <8 -10 BPM)
 - PSV
 - Bi-PAP
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Minute Ventilation
 • The primary goal of volume ventilation ($V_T - V_{a} + V_{d}$) achieve a desired minute ventilation (\dot{V}_{E}) that matches the patient’s metabolic needs and accomplishes adequate gas exchange.
 • Ventilators manufactured in the United States commonly have controls for V_T and f used to set the \dot{V}_{E}, so it is uncommon to see a know specifically for \dot{V}_{E} in a U.S. manufactured machine.
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Minute Ventilation
 • Metabolic rate is directly related to body surface area (BSA)
 • is approximately 4 times V_B BSA

Males: $= 4 \times BSA$
Females: $= 3.5 \times BSA$
Initiation of Mechanical Ventilation

- **Initial Ventilator Settings**
 - Minute Ventilation based on BSA
 - **Example:**
 Female patient with an estimated BSA of 2.0 m²

 \[
 V_B \text{, } B = 3.5 \times 2.0 \text{ m}^2
 \]

 \[
 V_B = 7.0 \text{ L/min}
 \]

 - A patient’s \(V_B \) requirements increase by 9% for every 1 °C increase on body temperature
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Tidal Volume
 • Spontaneous VT for an adult is 5 – 7 ml/kg of IBW

Determining VT for Ventilated Patients

• A range of 6 – 12 ml/kg IBW is used for adults
 • 10 – 12 ml/kg IBW (normal lung function)
 • 8 – 10 ml/kg IBW (obstructive lung disease)
 • 6 – 8 ml/kg IBW (ARDS) – can be as low as 4 ml/kg

• A range of 5 – 10 ml/kg IBW is used for infants and children (Pilbeam)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Ideal Body Weight Calculation

Male IBW in lb: \[106 + [6 \times (\text{height in inches} - 60)]\]

Female IBW in lb: \[105 + [5 \times (\text{height in inches} - 60)]\]

Ideally, a tidal volume should be chosen that maintains a \(P_{\text{plat}} < 30 \text{ cm H}_{2}\text{O} \)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Respiratory Rate
 • Normal respiratory rate is 12-18 breaths/min.

Determining Respiratory Rate for Ventilated Patients

• A range of 8 – 12 breaths per minute (BPM)

Rates should be adjusted to try and minimize auto-PEEP
Initiation of Mechanical Ventilation

- Initial Ventilator Settings
 - Minute Ventilation
 - Respiratory rate is chosen in conjunction with tidal volume to provide an acceptable minute ventilation
 \[V_{\text{E}} = \text{VT} \times f \]
 - Normal minute ventilation is 5-10 L/min
 - Estimated by using 100 mL/kg IBW
 - ABG needed to assess effectiveness of initial settings
 - If PaCO2 > 45 (≥ minute ventilation via f or VT)
 - If PaCO2 < 35 (≤ minute ventilation via f or VT)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Relationship of VT, Flow, TCT and I:E Ration
 • Total Cycle Time equals inspiratory time plus expiratory time ($T_I + T_E = T_{CT}$)

\[
2 \text{ sec } (T_I) + 4 \text{ sec } (T_E) = 6 \text{ sec } (T_{CT})
\]

• Respiratory Rate (f) equals 1 min (60 sec) divided by total cycle time

\[
f = \frac{1 \text{ min}}{60 \text{ sec}} \div \frac{T_{CT}}{6 \text{ sec}} = 10 \text{ breaths/min}
\]
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Relationship of VT, Flow, TCT and I:E Ration
 • Calculating T_I from a percentage of TCT ($T_I \%$)

If set f is 10, then TCT equals 6 sec.

If $T_I \%$ is set at 33% or 1/3 of TCT

$T_I = 0.33 \times 6 \text{ sec.} = 2 \text{ sec.}$

Note: $TCT - T_I = T_E$
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Relationship of VT, Flow, TCT and I:E Ratio
 • I:E Ratio equals T_I divided by T_E

\[I:E = \frac{T_I}{T_E} \]

e.g.,
\[\frac{2 \text{ sec. (}T_I\text{)}}{4 \text{ sec. (}T_E\text{)}} = 1:2 \text{ (I:E Ratio)} \]

I:E ratios are usually set at 1:1.5 – 1:4 to help prevent air-trapping (auto-PEEP)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Relationship of VT, Flow, TCT and I:E Ration
 • I:E Ratio are usually expressed so that T_I equals 1

To reduce the I:E ration to its simplest form, divide the numerator and the denominator by T_I

\[
I:E = \frac{T_I}{T_E} \quad \text{e.g.,} \quad \frac{0.7 \text{ sec}}{0.7 \text{ sec}} = 1:4
\]

\[
\frac{T_E}{T_I} \quad \text{e.g.,} \quad \frac{2.8 \text{ sec}}{0.7 \text{ sec}}.
\]
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Relationship of VT, Flow, TCT and I:E Ration
 • Calculating T_i from VT and Flow (square wave)

\[
T_i = \frac{\text{VT}}{\text{Flow}} \quad \text{e.g.,} \quad \frac{1 \text{ L}}{1 \text{ L/sec}} = 1 \text{ sec} (T_i)
\]

The flow control on adult ventilators is calibrated in L/min., so flow needs to be converted to L/sec. as follows:

If flow is 60 L/min, it is equal to \(\frac{60 \text{ L/min}}{60 \text{ sec}} = 1 \text{ L/sec} \)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Adjusting I:E Ratio

 - $\dot{V}_1 \equiv \dot{V}_T \equiv T_I \equiv$ smaller I:E ratio
 - $\dot{V}_1 \equiv \dot{V}_T \equiv T_I \equiv$ larger I:E ratio

 - $V_T \equiv V_T \equiv T_I \equiv$ larger I:E ratio
 - $V_T \equiv V_T \equiv T_I \equiv$ smaller I:E ratio

 - $f \equiv RR \equiv T_E \equiv$ larger I:E ratio
 - $f \equiv RR \equiv T_E \equiv$ smaller I:E ratio

 - $T_I \% \equiv T_I \% \equiv$ larger I:E ratio
 - e.g., = $T_I \%$ of 20% = 1:4, $T_I \%$ of 25% = 1:3
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Inspiratory Flow
 • Rate of Gas Flow
 • As a beginning point, flow is normal set to deliver inspiration in about 1 second (range 0.8 to 1.2 sec.), producing an I:E ratio of approximately 1:2 or less (usually about 1:4)

 • This can be achieved with an initial peak flow of about 60 L/min (range of 40 to 80 L/min)

Most importantly, flows are set to meet a patient’s inspiratory demand
Adequate Flow During Volume Ventilation

\[P_{aw} \text{ cmH}_2\text{O} \]

Time (s)

Adequate flow
Inadequate Flow During Volume Ventilation

Adequate flow

Flow set too low

\(P_{aw} \) cmH\(_2\)O

Time (s)
The Patient Outbreathing the Set Flow

- \(P_{aw} \) (cmH\(_2\)O)
- Time (Sec)

Air Starvation
Expiratory Flow Pattern

- **Inspiration**
 - Beginning of expiration
 - Exhalation valve opens

- **Expiration**
 - Expiratory time T_E
 - Duration of expiratory flow

- **Flow (L/min)**
- **Time (sec)**

- **Peak Expiratory Flow Rate (PEFR)**
Inadequate Inspiratory Flow

Active Inspiration or Asynchrony

Patient's effort

Flow (L/min)

Normal
Abnormal

Time (sec)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Flow Patterns
 • Selection of flow pattern and flow rate may depend on the patient’s lung condition, e.g.,
 • Post-operative patient recovering from anesthesia may have very modest flow demands
 • Young adult with pneumonia and a strong hypoxemic drive would have very strong flow demands
Initiation of Mechanical Ventilation

- **Initial Ventilator Settings**
 - **Flow Pattern**
 - **Constant Flow (rectangular or square waveform)**
 - Generally provides the shortest TI
 - Some clinician choose to use a constant (square) flow pattern initially because it enables them to obtain baseline measurements of lung compliance and airway resistance (Oakes’ Ventilation Management; ch.5)
Initiation of Mechanical Ventilation

- Initial Ventilator Settings
 - Flow Pattern
 - Sine Flow
 - May contribute to a more even distribution of gas in the lungs
 - Peak pressures are mean airway pressure are about the same for sine and square wave patterns
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Flow Pattern
 • Descending (decelerating) Ramp
 • Improves distribution of ventilation, results in a longer TI, decreased peak pressure, and increased mean airway pressure (which increases oxygenation)
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • Flow Patterns
 • In Terms of Patient Lung Disorders
 • Normal lungs: Not of key importance

 • Low compliance, hypoxemia: Descending flow pattern may be beneficial by keeping peak pressures low and mean airway pressure high, and improving gas distribution

 • High Raw: Descending flow pattern more likely to deliver a set VT at a lower pressure and provide for better distribution of air through the lung than a constant flow
Initiation of Mechanical Ventilation

• **Initial Ventilator Settings**
 • **Positive End Expiratory Pressure (PEEP)**
 • Initially set at 3 – 5 cm H2O
 • Restores FRC and physiological PEEP that existed prior to intubation
 • Subsequent changes are based on ABG results
 • Useful to treat refractory hypoxemia
 • Contraindications for therapeutic PEEP (>5 cm H2O)
 • Hypotension
 • Elevated ICP
 • Uncontrolled pneumothorax
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • FiO2
 • Initially 100%
 • Severe hypoxemia
 • Abnormal cardiopulmonary functions
 • Post-resuscitation
 • Smoke inhalation
 • ARDS

 • After stabilization, attempt to keep FiO2 <50%
 • Avoids oxygen-induced lung injuries
 • Absorption atelectasis
 • Oxygen toxicity
Initiation of Mechanical Ventilation

• Initial Ventilator Settings
 • FiO2
 • Patients with mild hypoxemia or normal cardiopulmonary function
 • Drug overdose
 • Uncomplicated postoperative recovery
 • FiO2 of 40%
 • Same FiO2 prior to mechanical ventilation
Initiation of Mechanical Ventilation

• Initial Ventilator Settings For PCV

 • Rate, T₁, and I:E ration are set in PCV as they are in VV

 • The pressure gradient (PIP-PEEP) is adjusted to establish volume delivery

Remember: Volume delivery changes as lung characteristics change and can vary breath to breath
Initiation of Mechanical Ventilation

- **Initial Ventilator Settings For PCV**
 - **Initial Pressure Setting**
 1. Set at P_{plat} during VV – adjust to achieve desired VT

 or

 2. Use PIP during VV minus 5 cm H2O (PIP – 5) as a starting point – adjust to achieve desired VT

 or

 3. If volume readings not available, initiate pressure at 10 – 15 cm H2O – adjust to achieve desired VT

 In PCV P_{alv} *cannot go higher than set pressure, therefore keeping PIP <30 cm H2O can helps avoid alveolar overinflation*
Initiation of Mechanical Ventilation

- Initial Ventilator Settings For PCV
 - Flow Pattern
 - PCV provides a descending ramp waveform

Note: The patient can vary the inspiratory flow on demand
Initiation of Mechanical Ventilation

• **Active Inspiration with PCV**
 • The patient can vary inspiratory flow on demand
 • The dashed lines represent active inspiration
 • Note the flow and volume difference during active inspiration
Initiation of Mechanical Ventilation

• **Initial Ventilator Settings For PCV**
 • **Rise Time (slope, flow acceleration)**
 • Rise time is the amount of T_i it takes for the ventilator to reach the set pressure at the beginning of inspiration

 • Inspiratory flow delivery during PCV can be adjusted with an inspiratory rise time control (aka: slope control)

 • Ventilator graphics can be used to set the rise time
Initiation of Mechanical Ventilation

• **Initial Ventilator Settings For PCV**
 • **Rise Time (slope, flow acceleration)**
 • Ventilator graphics can be used to set the rise time

A. Appropriate sensitivity setting
B. (solid line) Rapid rise in pressure
 B1. Overshoot – too rapid rise time
 B2. (dashed line) Increase to set pressure has been tapered
C. Set pressure
D.1. Active exhalation – TI too long
D.2. ATC assisting exhalation
Initiation of Mechanical Ventilation

• Ventilator Alarm Settings
 • High Minute Ventilation
 • Set at 2 L/min or 10%-15% above baseline minute ventilation
 • Patient is becoming tachypneic (respiratory distress)
 • Ventilator is self-triggering

• High Respiratory Rate Alarm
 • Set 10 – 15 BPM over observed respiratory rate
 • Patient is becoming tachypneic (respiratory distress)
 • Ventilator self-triggering
Initiation of Mechanical Ventilation

• **Ventilator Alarm Settings**
 - **Low Exhaled Tidal Volume Alarm**
 - Set 100 ml or 10%-15% lower than expired mechanical tidal volume
 - Causes
 - System leak
 - Circuit disconnection
 - ET Tube cuff leak

 - **Low Exhaled Minute Ventilation Alarm**
 - Set at 2 L/min or 10%-15% below average minute volume
 - Causes
 - System leak
 - Circuit disconnection
 - ET Tube cuff leak
Initiation of Mechanical Ventilation

• Ventilator Alarm Settings
 • High Inspiratory Pressure Alarm
 • Set 10 – 15 cm H2O above PIP
 • Inspiration is terminated when triggered
 • Common causes:
 • Water in circuit
 • Kinking or biting of ET Tube
 • Secretions in the airway
 • Bronchospasm
 • Tension pneumothorax
 • Decrease in lung compliance
 • Increase in airway resistance
 • Coughing
Initiation of Mechanical Ventilation

• **Ventilator Alarm Settings**
 - **Low Inspiratory Pressure Alarm**
 - Set 10 – 15 cm H2O below observed PIP
 - **Causes**
 - System leak
 - Circuit disconnection
 - ET Tube cuff leak

 • **High/Low PEEP/CPAP Alarm (baseline alarm)**
 - **High**: Set 3-5 cm H2O above PEEP
 - Circuit or exhalation manifold obstruction
 - Auto – PEEP
 - **Low**: Set 2-5 cm H2O below PEEP
 - Circuit disconnect
Initiation of Mechanical Ventilation

- **Ventilator Alarm Settings**
 - High/Low FiO2 Alarm
 - High: 5% over the analyzed FiO2
 - Low: 5% below the analyzed FiO2
 - High/Low Temperature Alarm
 - Heated humidification
 - High: No higher than 37°C
 - Low: No lower than 30°C
Initiation of Mechanical Ventilation

• Ventilator Alarm Settings
 • Apnea Alarm
 • Set with a 15 – 20 second time delay
 • In some ventilators, this triggers an apnea ventilation mode

• Apnea Ventilation Settings
 • Provide full ventilatory support if the patient become apneic
 • VT 8 – 12 mL/kg ideal body weight
 • Rate 10 – 12 breaths/min
 • FiO2 100%
Thank You